Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Viruses ; 13(12)2021 11 25.
Article in English | MEDLINE | ID: covidwho-1590034

ABSTRACT

Disease tolerance has emerged as an alternative way, in addition to host resistance, to survive viral-bacterial co-infections. Disease tolerance plays an important role not in reducing pathogen burden, but in maintaining tissue integrity and controlling organ damage. A common co-infection is the synergy observed between influenza virus and Streptococcus pneumoniae that results in superinfection and lethality. Several host cytokines and cells have shown promise in promoting tissue protection and damage control while others induce severe immunopathology leading to high levels of morbidity and mortality. The focus of this review is to describe the host cytokines and innate immune cells that mediate disease tolerance and lead to a return to host homeostasis and ultimately, survival during viral-bacterial co-infection.


Subject(s)
Immunity, Innate , Influenza, Human/immunology , Orthomyxoviridae/immunology , Pneumococcal Infections/immunology , Streptococcus pneumoniae/immunology , Coinfection , Cytokines/immunology , Homeostasis , Humans , Influenza, Human/microbiology , Influenza, Human/virology , Pneumococcal Infections/microbiology , Superinfection
2.
Front Immunol ; 12: 765528, 2021.
Article in English | MEDLINE | ID: covidwho-1555219

ABSTRACT

Influenza vaccination is an effective public health measure to reduce the risk of influenza illness, particularly when the vaccine is well matched to circulating strains. Notwithstanding, the efficacy of influenza vaccination varies greatly among vaccinees due to largely unknown immunological determinants, thereby dampening population-wide protection. Here, we report that dietary fibre may play a significant role in humoral vaccine responses. We found dietary fibre intake and the abundance of fibre-fermenting intestinal bacteria to be positively correlated with humoral influenza vaccine-specific immune responses in human vaccinees, albeit without reaching statistical significance. Importantly, this correlation was largely driven by first-time vaccinees; prior influenza vaccination negatively correlated with vaccine immunogenicity. In support of these observations, dietary fibre consumption significantly enhanced humoral influenza vaccine responses in mice, where the effect was mechanistically linked to short-chain fatty acids, the bacterial fermentation product of dietary fibre. Overall, these findings may bear significant importance for emerging infectious agents, such as COVID-19, and associated de novo vaccinations.


Subject(s)
Dietary Fiber/pharmacology , Immunity, Humoral/drug effects , Influenza Vaccines/immunology , Influenza, Human/immunology , Adolescent , Adult , Animals , Dietary Fiber/metabolism , Fatty Acids, Volatile/metabolism , Fatty Acids, Volatile/pharmacology , Female , Fermentation , Gastrointestinal Microbiome/drug effects , Gastrointestinal Microbiome/immunology , Humans , Immunogenicity, Vaccine , Influenza, Human/microbiology , Influenza, Human/prevention & control , Male , Mice , Middle Aged , Orthomyxoviridae/immunology , Seasons , Vaccination , Young Adult
3.
Exp Biol Med (Maywood) ; 247(5): 409-415, 2022 03.
Article in English | MEDLINE | ID: covidwho-1511670

ABSTRACT

The upper respiratory tract is inhabited by diverse range of commensal microbiota which plays a role in protecting the mucosal surface from pathogens. Alterations of the bacterial community from respiratory viral infections could increase the susceptibility to secondary infections and disease severities. We compared the upper respiratory bacterial profiles among Thai patients with influenza or COVID-19 by using 16S rDNA high-throughput sequencing based on MiSeq platform. The Chao1 richness was not significantly different among groups, whereas the Shannon diversity of Flu A and Flu B groups were significantly lower than Non-Flu & COVID-19 group. The beta diversity revealed that the microbial communities of influenza (Flu A and Flu B), COVID-19, and Non-Flu & COVID-19 were significantly different; however, the comparison of the community structure was similar between Flu A and Flu B groups. The bacterial classification revealed that Enterobacteriaceae was predominant in influenza patients, while Staphylococcus and Pseudomonas were significantly enriched in the COVID-19 patients. These implied that respiratory viral infections might be related to alteration of upper respiratory bacterial community and susceptibility to secondary bacterial infections. Moreover, the bacteria that observed in Non-Flu & COVID-19 patients had high abundance of Streptococcus, Prevotella, Veillonella, and Fusobacterium. This study provides the basic knowledge for further investigation of the relationship between upper respiratory microbiota and respiratory disease which might be useful for better understanding the mechanism of viral infectious diseases.


Subject(s)
Bacteria/genetics , COVID-19/microbiology , Influenza, Human/microbiology , Microbiota/physiology , Nasopharynx/microbiology , Adolescent , Adult , Humans , Microbiota/genetics , Middle Aged , Retrospective Studies , Young Adult
4.
J Med Virol ; 93(4): 2385-2395, 2021 04.
Article in English | MEDLINE | ID: covidwho-1217388

ABSTRACT

The burden and impact of secondary superadded infections in critically ill coronavirus disease 2019 (COVID-19) patients is widely acknowledged. However, there is a dearth of information regarding the impact of COVID-19 in patients with tuberculosis, HIV, chronic hepatitis, and other concurrent infections. This review was conducted to evaluate the consequence of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection in patients with concurrent co-infections based on the publications reported to date. An extensive comprehensive screening was conducted using electronic databases up to 3rd September 2020 after obtaining registration with PROSPERO (CRD420202064800). The observational studies or interventional studies in English, evaluating the impact of SARS-CoV-2 in patients with concurrent infections are included for the meta-analyses. Our search retrieved 20 studies, with a total of 205,702 patients. Patients with tuberculosis (RR = 2.10; 95% CI, 1.75-2.51; I2 = 0%), influenza (RR = 2.04; 95% CI, 0.15-28.25, I2 = 99%) have an increased risk of mortality during a co-infection with SARS-CoV-2. No significant impact is found in people living with HIV (RR = 0.99; 95% CI, 0.82-1.19; I2 = 30%), Chronic hepatitis (RR = 1.15; 95% CI, 0.73-1.81; I2 = 10%). Several countries (Brazil, Paraguay, Argentina, Peru, Colombia, and Singapore) are on the verge of a dengue co epidemic (cumulative 878,496 and 5,028,380 cases of dengue and COVID-19 respectively). The impact of COVID-19 in patients of concurrent infections with either tuberculosis or influenza is detrimental. The clinical outcomes of COVID-19 in HIV or chronic hepatitis patients are comparable to COVID-19 patients without these concurrent infections.


Subject(s)
COVID-19/epidemiology , COVID-19/microbiology , Coinfection/epidemiology , Coinfection/microbiology , Coinfection/virology , Databases, Factual , Dengue/epidemiology , Dengue/microbiology , HIV Infections/epidemiology , HIV Infections/microbiology , Hepatitis, Chronic/epidemiology , Hepatitis, Chronic/microbiology , Humans , Influenza, Human/epidemiology , Influenza, Human/microbiology , SARS-CoV-2/isolation & purification , Tuberculosis/epidemiology , Tuberculosis/microbiology
5.
BMC Infect Dis ; 21(1): 199, 2021 Feb 22.
Article in English | MEDLINE | ID: covidwho-1094028

ABSTRACT

BACKGROUND: During the coronavirus disease 2019 (COVID-19) pandemic in the Netherlands it was noticed that very few blood cultures from COVID-19 patients turned positive with clinically relevant bacteria. This was particularly evident in comparison to the number of positive blood cultures during previous seasonal epidemics of influenza. This observation raised questions about the occurrence and causative microorganisms of bacteraemia in COVID-19 patients, especially in the perspective of the widely reported overuse of antibiotics and the rising rate of antibiotic resistance. METHODS: We conducted a retrospective cohort study on blood culture results in influenza A, influenza B and COVID-19 patients presenting to two hospitals in the Netherlands. Our main outcome consisted of the percentage of positive blood cultures. The percentage of clinically relevant blood cultures, isolated bacteria and 30-day all-cause mortality served as our secondary outcomes. RESULTS: A total of 1331 viral episodes were analysed in 1324 patients. There was no statistically significant difference (p = 0.47) in overall occurrence of blood culture positivity in COVID-19 patients (9.0, 95% CI 6.8-11.1) in comparison to influenza A (11.4, 95% CI 7.9-14.8) and influenza B patients (10.4, 95% CI 7.1-13.7,). After correcting for the high rate of contamination, the occurrence of clinically relevant bacteraemia in COVID-19 patients amounted to 1.0% (95% CI 0.3-1.8), which was statistically significantly lower (p = 0.04) compared to influenza A patients (4.0, 95% CI 1.9-6.1) and influenza B patients (3.0, 95% CI 1.2-4.9). The most frequently identified bacterial isolates in COVID-19 patients were Escherichia coli (n = 2) and Streptococcus pneumoniae (n = 2). The overall 30-day all-cause mortality for COVID-19 patients was 28.3% (95% CI 24.9-31.7), which was statistically significantly higher (p = <.001) when compared to patients with influenza A (7.1, 95% CI 4.3-9.9) and patients with influenza B (6.4, 95% CI 3.8-9.1). CONCLUSIONS: We report a very low occurrence of community-acquired bacteraemia amongst COVID-19 patients in comparison to influenza patients. These results reinforce current clinical guidelines on antibiotic management in COVID-19, which only advise utilization of antibiotics when a bacterial co-infection is suspected.


Subject(s)
Bacteremia/epidemiology , COVID-19/microbiology , Community-Acquired Infections/epidemiology , Influenza A virus , Influenza B virus , Influenza, Human/microbiology , SARS-CoV-2 , Adult , Aged , Aged, 80 and over , Anti-Bacterial Agents/therapeutic use , COVID-19/mortality , Female , Humans , Male , Middle Aged , Netherlands/epidemiology , Retrospective Studies
6.
Molecules ; 25(21)2020 Oct 22.
Article in English | MEDLINE | ID: covidwho-983191

ABSTRACT

Inflammation is a biological response to the activation of the immune system by various infectious or non-infectious agents, which may lead to tissue damage and various diseases. Gut commensal bacteria maintain a symbiotic relationship with the host and display a critical function in the homeostasis of the host immune system. Disturbance to the gut microbiota leads to immune dysfunction both locally and at distant sites, which causes inflammatory conditions not only in the intestine but also in the other organs such as lungs and brain, and may induce a disease state. Probiotics are well known to reinforce immunity and counteract inflammation by restoring symbiosis within the gut microbiota. As a result, probiotics protect against various diseases, including respiratory infections and neuroinflammatory disorders. A growing body of research supports the beneficial role of probiotics in lung and mental health through modulating the gut-lung and gut-brain axes. In the current paper, we discuss the potential role of probiotics in the treatment of viral respiratory infections, including the COVID-19 disease, as major public health crisis in 2020, and influenza virus infection, as well as treatment of neurological disorders like multiple sclerosis and other mental illnesses.


Subject(s)
Coronavirus Infections/therapy , Influenza, Human/therapy , Mental Disorders/therapy , Multiple Sclerosis/therapy , Pneumonia, Viral/therapy , Probiotics/therapeutic use , Respiratory Tract Infections/therapy , Betacoronavirus/drug effects , Betacoronavirus/pathogenicity , Betacoronavirus/physiology , Brain/immunology , COVID-19 , Coronavirus Infections/immunology , Coronavirus Infections/microbiology , Coronavirus Infections/virology , Gastrointestinal Microbiome/immunology , Gastrointestinal Tract/immunology , Gastrointestinal Tract/microbiology , Humans , Immunomodulation , Influenza, Human/immunology , Influenza, Human/microbiology , Influenza, Human/virology , Lung/immunology , Mental Disorders/immunology , Mental Disorders/microbiology , Microbial Consortia/immunology , Multiple Sclerosis/immunology , Multiple Sclerosis/microbiology , Orthomyxoviridae/drug effects , Orthomyxoviridae/pathogenicity , Orthomyxoviridae/physiology , Pandemics , Pneumonia, Viral/immunology , Pneumonia, Viral/microbiology , Pneumonia, Viral/virology , Respiratory Tract Infections/immunology , Respiratory Tract Infections/microbiology , SARS-CoV-2 , Symbiosis/immunology
7.
Clin Microbiol Infect ; 26(10): 1395-1399, 2020 Oct.
Article in English | MEDLINE | ID: covidwho-702950

ABSTRACT

OBJECTIVES: To investigate the incidence of bacterial and fungal coinfection of hospitalized patients with confirmed severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in this retrospective observational study across two London hospitals during the first UK wave of coronavirus disease 2019 (COVID-19). METHODS: A retrospective case series of hospitalized patients with confirmed SARS-CoV-2 by PCR was analysed across two acute NHS hospitals (20 February-20 April 2020; each isolate reviewed independently in parallel). This was contrasted to a control group of influenza-positive patients admitted during the 2019-2020 flu season. Patient demographics, microbiology and clinical outcomes were analysed. RESULTS: A total of 836 patients with confirmed SARS-CoV-2 were included; 27 (3.2%) of 836 had early confirmed bacterial isolates identified (0-5 days after admission), rising to 51 (6.1%) of 836 throughout admission. Blood cultures, respiratory samples, pneumococcal or Legionella urinary antigens and respiratory viral PCR panels were obtained from 643 (77%), 110 (13%), 249 (30%), 246 (29%) and 250 (30%) COVID-19 patients, respectively. A positive blood culture was identified in 60 patients (7.1%), of which 39 were classified as contaminants. Bacteraemia resulting from respiratory infection was confirmed in two cases (one each community-acquired Klebsiella pneumoniae and ventilator-associated Enterobacter cloacae). Line-related bacteraemia was identified in six patients (three Candida, two Enterococcus spp. and one Pseudomonas aeruginosa). All other community-acquired bacteraemias (n = 16) were attributed to nonrespiratory infection. Zero concomitant pneumococcal, Legionella or influenza infection was detected. A low yield of positive respiratory cultures was identified; Staphylococcus aureus was the most common respiratory pathogen isolated in community-acquired coinfection (4/24; 16.7%), with pseudomonas and yeast identified in late-onset infection. Invasive fungal infections (n = 3) were attributed to line-related infections. Comparable rates of positive coinfection were identified in the control group of confirmed influenza infection; clinically relevant bacteraemias (2/141; 1.4%), respiratory cultures (10/38; 26.3%) and pneumococcal-positive antigens (1/19; 5.3%) were low. CONCLUSIONS: We found a low frequency of bacterial coinfection in early COVID-19 hospital presentation, and no evidence of concomitant fungal infection, at least in the early phase of COVID-19.


Subject(s)
Bacterial Infections/epidemiology , Betacoronavirus/pathogenicity , Coronavirus Infections/epidemiology , Influenza, Human/epidemiology , Mycoses/epidemiology , Pandemics , Pneumonia, Viral/epidemiology , Respiratory Tract Infections/epidemiology , Age Factors , Aged , Aged, 80 and over , Bacterial Infections/diagnosis , Bacterial Infections/microbiology , Bacterial Infections/virology , COVID-19 , Coinfection , Community-Acquired Infections , Coronavirus Infections/diagnosis , Coronavirus Infections/microbiology , Coronavirus Infections/virology , Female , Hospitalization , Humans , Influenza, Human/diagnosis , Influenza, Human/microbiology , Influenza, Human/virology , Male , Middle Aged , Mycoses/diagnosis , Mycoses/microbiology , Mycoses/virology , Pneumonia, Viral/diagnosis , Pneumonia, Viral/microbiology , Pneumonia, Viral/virology , Respiratory Tract Infections/diagnosis , Respiratory Tract Infections/microbiology , Respiratory Tract Infections/virology , Retrospective Studies , SARS-CoV-2 , Severity of Illness Index , United Kingdom/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL